Лекция 7.

В поисках новых законов



Строго говоря, то, о чем я собираюсь говорить в этой лекции, нельзя назвать характеристикой законов физики. Когда мы рассуждаем о характере физических законов, мы можем по крайней мере предполагать, что говорим о самой природе. Но теперь мне хочется поговорить не столько о природе, сколько о нашем отношении к ней. Мне хочется рассказать вам о том, что мы считаем сегодня известным, что еще предстоит отгадать, и о том, каким образом угадывают законы в физике. Кто-то даже предложил, что лучше всего, если я по мере моего рассказа мало-помалу объясню вам, как угадать закон, а в заключение открою для вас новый закон. Не знаю, удастся ли мне это сделать.

Прежде всего я хочу рассказать вам о нынешнем состоянии физики, о том, что в ней сейчас известно. Вы могли бы подумать, что все это я уже вам рассказал, так как в предыдущих лекциях я изложил вам все основные известные законы. Но всякий закон должен быть законом для чего-то: закон сохранения энергии говорит об энергии чего-то, законы квантовой механики - это законы квантовой механики чего-то - и все эти законы, вместе взятые, еще не говорят нам о том, какова же природа, о которой здесь столько говорилось. Поэтому мне хочется сейчас рассказать вам немного о том материале, которым движут все эти законы. Прежде всего о материи: как это ни удивительно, вся материя одинакова.

Известно, что материя, из которой сделаны звезды, такая же, как и материя, из которой сделана Земля. Характер света, испускаемого звездами, дает нам, так сказать, отпечатки пальцев, по которым можно установить, что там атомы того же типа, что и на Земле. Оказывается, и живая, и неживая природа образуется из атомов одинакового типа. Лягушки сделаны из того же материала, что и камни, но только материал по-разному использован. Все это упрощает нашу задачу. У нас есть атомы и ничего больше, а атомы однотипны, и однотипны повсюду.


Все атомы, по-видимому, имеют одинаковую структуру. У них есть ядра, окруженные электронами. Можно составить список частиц, из которых, как мы думаем, построен наш мир и о которых, по нашему мнению, мы знаем (табл. 3).

Прежде всего в нем стоят электроны - частицы, составляющие внешнюю оболочку атома. Затем имеется ядро, но на сегодня считается, что оно само состоит из частиц двух различных типов, называемых нейтронами и протонами. Вот вам и еще две частицы. Мы глядим на звезды и видим атомы, они испускают свет, а сам свет состоит из частиц, называемых фотонами. В самом начале наших лекций мы говорили о тяготении, гравитации, и если только квантовая теория верна, то и у гравитации должны быть какие-то волны, ведущие себя и как частицы. Такие частицы называют гравитонами. А если вы не верите в их существование, называйте их просто гравитацией. Наконец, я уже упоминал о β-распаде, во время которого нейтрон может распадаться на протон, электрон и нейтрино, вернее антинейтрино. Так что у нас есть еще одна частица - нейтрино. Кроме всех этих частиц у нас есть еще, конечно, и все соответствующие античастицы. Это короткое замечание сразу без каких-либо затруднений удваивает число известных нам частиц.

При помощи только что перечисленных частиц можно объяснить все явления, протекающие при низкой энергии, и даже все обычные явления в любой части Вселенной. Но когда в дело вступают частицы с очень высокой энергией, это уже неверно, и в лабораторных условиях нам удалось воспроизвести некоторые очень странные явления. Если же пренебречь такими исключительными случаями, то все обычные явления могут быть объяснены взаимодействием и движением перечисленных выше частиц. Например, сама жизнь, по общему мнению, может быть, в принципе, объяснена движением атомов, а эти атомы состоят из нейтронов, протонов и электронов.

Я должен сразу же оговориться - когда мы говорим, что что-то, в принципе, может быть объяснено таким-то образом, мы имеем в виду следующее: если бы нам удалось во всем разобраться до конца, то оказалось бы, что для понимания явлений живой природы не нужно открывать никаких новых законов физики. Еще один пример. Тот факт, что звезды испускают энергию, солнечную или звездную, также можно объяснить ядерными реакциями между этими частицами. По крайней мере так считается. При помощи такой модели удается правильно описать всякого рода подробности поведения атома, насколько только это нам известно сегодня. Я могу даже утверждать, что среди известных на сегодня явлений нет такого, относительно которого мы были бы уверены, что его нельзя объяснить подобным образом или хотя бы, что такое объяснение связано с решением какой-то глубокой загадки.

Но так было не всегда. Например, известны явления так называемой сверхпроводимости, когда металл при очень низких температурах проводит электричество, не оказывая ему какого-либо сопротивления. С первого взгляда совсем не было очевидным, что это явление есть следствие уже известных законов. Но теперь, когда в нем достаточно внимательно разобрались, оказалось, что и в самом деле оно полностью объясняется на основе уже имеющихся знаний. Сейчас мы знаем о других явлениях, например о явлении телепатии, которые нам не удается объяснить на основании имеющихся у нас физических знаний. Однако существование такого рода явления пока еще не установлено с полной достоверностью, и мы не можем гарантировать его существования. Если этот факт удалось бы подтвердить экспериментальным путем, это означало бы, что наша физика неполна, и вот почему физики так заинтересованы в том, чтобы выяснить, возможно ли такое восприятие или нет. Сейчас многие опыты показывают, что такого восприятия нет. Аналогичное положение с астрологией. Если от звезд действительно зависит, в какой день лучше идти к зубному врачу, - а именно так выглядит наша американская астрология, - то наши представления о физике неверны, ибо мы не представляем себе механизма, построенного, вообще говоря, на взаимодействии перечисленных выше частиц и объясняющего такое влияние. Этим и объясняется тот скептицизм, с которым ученые относятся к подобным теориям.

Правда, в случае гипноза с первого взгляда дело выглядело так, как будто такое объяснение невозможно. Но так было только, пока это явление оставалось недостаточно изученным. Ныне мы знаем о нем намного больше, и теперь считается вполне возможным, что гипноз можно объяснить обычными, хотя пока еще и не известными физиологическими процессами. Очевидно, что для его объяснения не понадобится какой-то силы нового типа.

Сегодня, когда наша теория всего, что происходит вне ядра атома; выглядит довольно точной и полной и позволяет нам, хотя, может быть, и не сразу, рассчитывать все с той же точностью, с какой мы можем проводить измерения, мы намного меньше знаем о силах взаимодействия между нейтронами и протонами, образующими ядро, и недостаточно хорошо понимаем их характер. Я хочу сказать, что на сегодня мы не понимаем характера взаимодействий между нейтронами и протонами достаточно хорошо для того, чтобы я смог, если вы меня об этом попросите, предоставив достаточно времени и достаточно вычислительных машин, точно определить все энергетические уровни углерода или решить другую задачу того же типа. Наших знаний для этого недостаточно. Мы умеем решать аналогичную задачу для энергетических уровней внешних электронов атома, а для ядра - нет, так как мы еще недостаточно понимаем природу внутриядерных сил.

Для того чтобы лучше разобраться в этих силах, были поставлены специальные опыты по изучению явлений при очень высоких энергиях. Суть этих опытов заключается в том, чтобы сталкивать между собой нейтроны и протоны с очень большой энергией и наблюдать возникающие при этом необычные явления, причем мы надеемся, что изучение этих необычных явлений даст нам лучшее понимание взаимодействия между нейтронами и протонами. Но эти эксперименты лишь открыли сосуд Пандоры. Хотя мы только хотели получше разобраться в характере сил, действующих между нейтронами и протонами, мы, с силой сталкивая эти частицы, обнаружили много новых частиц. Пытаясь лучше разобраться во внутриядерных силах, мы выловили более полусотни новых частиц, которые можно отнести в тот же столбец (см. табл. 4), что и нейтрон и протон, так как они взаимодействуют с этими частицами и имеют отношение к взаимодействию между ними. Кроме того, пока наши сети вылавливали всю эту мелочь, в них попалась пара частиц, не имеющих отношения к проблеме внутриядерных сил.



Одну назвали μ-мезоном или мюоном, а другую - нейтрино, причем вторая всегда сопровождает первую. Имеется два типа нейтрино: нейтрино одного типа всегда сопутствует электрону, а нейтрино другого типа - μ-мезону. Между прочим, к нашему крайнему удивлению, все законы поведения пары (μ-мезон и нейтрино сейчас уже изучены настолько полно, насколько об этом можно судить на современном уровне экспериментальной техники, и оказались в точности такими же, как и для пары электрон и нейтрино, за единственным исключением: масса μ-мезона оказалась в 207 раз больше массы электрона. Но это единственная разница между ними, и это довольно странно.

Четыре дюжины новых частиц образуют пугающий список, а ведь нужно еще помнить и об античастицах. У новых частиц разные названия: мезоны, пионы, каоны, лямбды, сигмы... все это ничего вам не скажет, для четырех дюжин новых частиц пришлось придумать немало новых названий! Но оказалось, что частицы образуют семейства, и это несколько облегчает наше положение. На самом деле срок жизни некоторых из этих так называемых частиц настолько мал, что до сих пор идут споры, возможно ли в действительности хотя бы установить их существование. Но в эти споры я не хочу здесь вдаваться.

Для того чтобы вы получили представление о том, что такое семейство элементарных частиц, рассмотрим случай нейтрона и протона. Нейтрон и протон имеют одинаковую массу с точностью до десятой процента или около того. Первая из них в 1836 раз, а вторая в 1839 раз тяжелее электрона. Еще замечательнее, что внутриядерные силы, большие силы взаимодействия внутри ядра между двумя протопами, оказались такими же, как и силы взаимодействия между протоном и нейтроном или нейтроном и нейтроном. Другими словами, изучая лишь сильные внутриядерные взаимодействия, нельзя отличить протон от нейтрона. Получается еще один закон симметрии: нейтрон можно заменить на протон - и ничего не изменится - при условии, что мы говорим только о сильных взаимодействиях. Но если нейтрон действительно заменить на протон, то разница будет огромная, так как протон несет электрический заряд, а нейтрон - нет. Посредством электрических измерений вы сразу обнаружите разницу между протоном и нейтроном, так что наша симметрия, позволяющая заменить протон на нейтрон, на самом деле лишь приближенная симметрия. Она действительно существует для сильных ядерных взаимодействий, но в глубоком физическом смысле ее нет, поскольку она не охватывает электрических явлений. Такую закономерность мы называем слабой симметрией, и нам приходится разбираться со слабыми симметриями.

Теперь, когда семейства элементарных частиц уже построены, известно, что подстановки типа замены нейтрона протоном возможны и для более широкого круга частиц. Но разница при такой замене оказывается еще большей. Утверждение, что нейтрон всегда можно заменить протоном, верно лишь приближенно, оно неверно с точки зрения теории электричества, но более широкий круг подстановок, которые оказались возможными, обеспечивает еще худшую симметрию. Тем не менее все эти слабые симметрии позволили организовать элементарные частицы в отдельные семейства и благодаря этому найти место для недостающих частиц и открыть некоторые новые частицы.

Игра такого рода - грубое угадывание отношений, определяющих некоторое семейство, - характерна для первых схваток с природой, предваряющих открытие какого-то действительно глубокого и очень важного закона. Прошлое науки дает много примеров тому. Игрой именно такого рода было открытие Менделеевым периодической таблицы элементов. Это было лишь первым шагом. Полное понимание причин такого строения таблицы Менделеева пришло много позднее, с теорией атома. Точно так же наши знания о ядерных энергетических уровнях были организованы Марией Майер[10] и Йенсеном[11] в их так называемой оболочечной модели ядра. Точно такую же игру представляет собой и вся физика в целом, где для упрощения мы прибегаем к приближениям и гипотезам.

Кроме всех этих частиц у нас имеются все те принципы, о которых мы говорили раньше: принципы симметрии и относительности, принцип, согласно которому все это должно подчиняться законам квантовой механики, да еще вытекающие из теории относительности соображения о локальном характере законов сохранения.

Но если собрать все эти принципы вместе, мы обнаружим, что их слишком много. Они несовместимы друг с другом. Если взять квантовую механику, теорию относительности, утверждение, что все должно быть локальным, и еще несколько молчаливых предположений, то мы придем к противоречию, потому что, вычисляя некоторые величины, получим для них бесконечно большие значения. А кто может утверждать, что бесконечность согласуется с реальностью природы?

Что же касается молчаливых предположений, о которых я упомянул, то к ним мы настолько привыкли, что не хотим или не можем понять их истинное значение. Вот вам пример. Если вы подсчитаете вероятность ряда взаимно исключающих событий, скажем, 50% за то, что случится это, 25% за то, что случится то, и т.д., то в сумме они должны составлять единицу. Мы считаем, что если сложить все вероятности, то должна получиться 100%-ная вероятность. Это кажется разумным, но именно с разумного и начинаются все наши беды. Другой пример: предположение о том, что энергия всегда должна быть положительной и не может стать отрицательной. И еще одно предположение, которое, по-видимому, принимается еще до того, как мы приходим к противоречиям, это так называемый принцип причинности, согласно которому, грубо говоря, следствие никогда не может предшествовать причине. Пока еще никто не пытался построить теорию, в которой не было бы предположения о полной вероятности или не учитывался бы принцип причинности и которая согласовалась бы с квантовой механикой, теорией относительности, принципом локальности и т. п. Поэтому мы просто не можем знать, какое же именно из наших допущений вызывает наши трудности и заставляет получать бесконечно большие значения. Вот это была бы настоящая задача! Правда, как оказалось, с помощью довольно грубых приемов все эти бесконечности удается замести под ковер, так что мы все еще в состоянии делать необходимые нам расчеты.

Вот так обстоит дело сейчас. А теперь я собираюсь поговорить о том, как открывают новые законы.

Вообще говоря, поиск нового закона ведется следующим образом. Прежде всего о нем догадываются. Затем вычисляют следствия этой догадки и выясняют, что повлечет за собой этот закон, если окажется, что он справедлив. Затем результаты расчетов сравнивают с тем, что наблюдается в природе, с результатами специальных экспериментов или с нашим опытом, и по результатам таких наблюдений выясняют, так это или не так. Если расчеты расходятся с экспериментальными данными, то закон неправилен.

В этом простом утверждении самое зерно науки. Неважно, насколько ты умен, кто автор догадки, известен он или нет - если теория расходится с экспериментом, значит теория неверна. Вот и все.

Верно, конечно, что для того чтобы окончательно убедиться в неверности теории, нужна небольшая дополнительная проверка. Ведь кто бы ни был экспериментатор, всегда есть возможность, что о результатах опытов было неправильно сообщено, что в эксперименте что-то было упущено, что здесь есть какая-то грязь или еще что-то, или что тот, кто проводил расчеты эффектов, ошибся в ходе анализа, хотя бы это и был сам автор гипотезы. Все эти замечания совершенно естественны, и поэтому, когда я говорю: "Поскольку расчеты не согласуются с опытом, предложенный закон неверен", - я считаю, что правильность эксперимента и расчета была установлена и после всестороннего анализа мы убедились в том, что наблюдаемые явления действительно логически следуют из принятой нами гипотезы и что она действительно расходится с предельно тщательно выверенным экспериментом.

У вас может сложиться не совсем правильное представление о науке. Вам может показаться, будто мы все время строим догадки, а затем проверяем их на экспериментах, так что эксперименту отводится подчиненная роль. Но на самом деле экспериментаторы вполне самостоятельные люди. Они любят экспериментировать даже до того, как кто-нибудь что-нибудь придумает, и очень часто работают в таких областях, в которых теоретики заведомо не делали еще никаких догадок. Например, мы можем знать много законов, но мы не знаем, справедливы ли они на самом деле при очень высоких энергиях, так как предположение об их справедливости - всего лишь хорошая гипотеза.

Экспериментаторы пытаются ставить опыты с высокими энергиями, и время от времени они сталкиваются с трудностями - то, что мы считали правильным, оказывается неверным. Таким образом, эксперименты могут привести к неожиданным результатам, а это заставляет нас выдвигать новые догадки. В качестве одного примера неожиданного экспериментального результата можно указать на открытие μ-мезона и нейтрино, о существовании которых никто не предполагал до тех пор, пока они не были открыты, и даже теперь никто не знает, как можно было бы догадаться о существовании этих частиц.

Конечно, вы понимаете, что такой метод позволяет только опровергнуть любую определенную теорию. Если только у нас есть какая-нибудь теория, какая-нибудь настоящая гипотеза, при помощи которой мы можем обычными методами предсказать результат эксперимента, то этого, вообще говоря, достаточно, чтобы покончить с этой теорией, как бы хороша она ни была. У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально.

Значит ли это, что ваша теория правильна?

Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.

В будущем вы смогли бы рассчитать более широкий круг следствий, провести более широкие экспериментальные исследования и выяснить, что ваша теория неверна. Вот почему у законов типа законов движения планет Ньютона такая долгая жизнь. Ньютон угадал закон всемирного тяготения, вывел из него самые различные следствия для Солнечной системы, сравнил их с результатами наблюдений - и потребовалось несколько столетий, прежде чем было замечено незначительное отклонение движения планеты Меркурий от предсказанного. На протяжении всех этих лет теория Ньютона не была опровергнута, и временно ее можно было считать верной. Но ее правильность никогда нельзя было доказать, потому что уже завтра эксперимент, может быть, покажет вам неправильность того. что вам казалось верным еще сегодня. Можно только удивляться тому, что нам удается придумывать теории, которые выдерживают натиск эксперимента столь длительное время.

Один из верных способов остановить прогресс науки - это разрешить эксперименты лишь в тех областях, где законы уже открыты. Но экспериментаторы усерднее всего ведут поиск там, где вероятнее всего найти опровержение наших теорий. Другими словами, мы стараемся как можно скорее опровергать самих себя, ибо это единственный путь прогресса. Например, сегодня среди обычных явлений с низкой энергией мы не знаем, где найти какую-нибудь неувязку, нам кажется, что здесь все в порядке, а поэтому и нет широкого фронта исследований ядерных реакций или явлений сверхпроводимости, направленных на поиск слабых мест. В настоящих лекциях я сосредоточил все внимание на открытиях фундаментальных законов. Правда, физика в целом, а это не менее важно, включает в себя и другой уровень исследований, интерпретацию явлений типа ядерной реакции или сверхпроводимости с точки зрения этих фундаментальных законов. Но сейчас я говорю о поисках слабых мест, каких-то ошибок в фундаментальных законах, и так как никто не знает, где найти такое место среди явлений низкой энергии, все экспериментаторы сегодняшнего дня, занятые поиском новых законов, ищут их в области высоких энергий.

Я хотел бы еще отметить, что чем менее конкретна теория, тем труднее ее опровергнуть. Если ваша догадка сформулирована плохо или достаточно неопределенно и если метод, которым вы пользуетесь для оценки последствий, не очень конкретен - вы не чувствуете уверенности и говорите: "Мне кажется, что здесь все правильно, так как все это объясняется тем-то и тем-то, а из этого более или менее следует вот это, и похоже, что я могу объяснить, как получается, что...", то ваша теория всем хороша - ведь ее нельзя опровергнуть. Кроме того, если ваш метод расчетов последствий недостаточно четок, при некоторой ловкости всегда можно сделать так, чтобы результаты экспериментов были похожи на предполагаемые последствия.

Возможно, вы знаете об этом по собственному опыту в других областях. Некто ненавидит свою мать. Причина, конечно, в том, что она не заботилась о нем и не любила его достаточно, когда он был маленьким. Но если вы начнете раскапывать прошлое, то окажется, что на самом деле мать его очень любила и все у них было хорошо. Ну, тогда ясно, она его слишком баловала! Как видите, расплывчатая теория позволяет получать любой результат. Поправить ее можно было бы следующим образом. Если бы вы смогли в точности и заранее определить, сколько любви недостаточно, а сколько чересчур много, то мы могли бы построить совершенно законную теорию, пригодную для экспериментальной проверки. Но стоит об этом заикнуться, как вам скажут: "Такие точные определения невозможны, когда речь идет о психологии". Но раз так, то нельзя утверждать, что вы что-нибудь знаете.

Вы можете ужаснуться, но у нас в физике есть примеры точно такого же типа. У нас есть эти слабые симметрии, с которыми приходится иметь дело следующим образом. У вас есть какая-то слабая симметрия, и вы вычисляете последствия в предположении, что она совершенно точная. Сравниваем результаты расчетов с экспериментом и видим, что они расходятся. Ну, ясно, ведь симметрия, о которой идет речь, только приближенная, так что если опыт согласуется с расчетами удовлетворительным образом, вы говорите: "Прекрасно!", а если они плохо согласуются между собой, вы говорите: "Здесь мы сталкиваемся с случаем особой чувствительности к нарушению симметрии". Это, конечно, смешно, но нам приходится двигаться вперед именно таким образом. Когда область исследования нова, а с новыми элементарными частицами мы познакомились совсем недавно, такой самообман, такое "прощупывание" наугад и составляет первые шаги науки. Относительно принципов симметрии физики справедливо все то, что можно сказать и о психологии, так что не нужно слишком смеяться. Вначале нужно только быть очень осторожным. При помощи расплывчатых теорий такого рода легко забраться в глухой тупик. Опровергнуть подобную теорию нелегко, и для того чтобы в такой игре не оказаться выброшенным за борт, требуется немалая смекалка и опыт.

На этом пути угадывания, вычисления следствий и сравнения с экспериментальными результатами можно застрять в самых разных местах. Можно застрять на стадии угадывания, когда у нас нет плодотворной идеи. Или можно застрять при вычислении последствий. Например, Юкава[12] в 1935 г. предложил теорию ядерных сил, но никто не может рассчитать ее следствий из-за чисто математических трудностей, а следовательно, невозможно и проверить эту теорию на эксперименте. Эта теория оставалась в нетронутом виде в течение длительного времени, пока мы не открыли все эти дополнительные частицы, которых совершенно не предвидел Юкава, а следовательно, не все обстоит так просто, как считает его теория. Еще одна стадия, на которой можно застрять, - это стадия эксперимента. Например, квантовая теория гравитации продвигается вперед очень медленно, если только вообще продвигается, из-за того, что в любом реально осуществимом эксперименте квантовые эффекты и гравитация никогда не выступают одновременно. Гравитационные силы слишком слабы по сравнению с электрическими.

Но я физик-теоретик и получаю больше удовольствия от теоретической стороны процесса. А поэтому мне хочется более подробно поговорить о том, как делаются догадки.

Как я уже говорил раньше, совсем не важно, откуда родилась та или иная догадка, важно только, чтобы она согласовалась с экспериментом и была по возможности определенной. "Ну, - скажете вы, - да ведь это совсем просто. Нужно построить машину, большую вычислительную машину, со своего рода рулеткой, которая станет предлагать одну за другой разные теории, и каждый раз, как она делает догадку и предлагает гипотезу о свойствах природы, она немедленно вычисляет всякого рода следствия и производит сравнения с некоторым набором экспериментальных результатов, в нее заложенных". Другими словами, догадки - это работа для дурака. На самом же деле все совсем наоборот, и я постараюсь объяснить вам, почему это так.

Прежде всего возникает вопрос: с чего начать? Вы скажете: "Я бы начал со всех уже известных принципов". Но все известные нам принципы несовместимы друг с другом, так что от чего-то нам нужно отказаться. Мы непрерывно получаем десятки писем, в которых настаивают, чтобы мы пожертвовали чем-то в наших догадках, в наших теориях.

В одном письме нам пишут: "Вы все время говорите, что пространство непрерывно. Но откуда вы знаете, как только речь заходит о достаточно малых отрезках, что в них содержится достаточно много точек и что это не просто большое число дискретных точек, разделенных маленькими промежутками?"

Или: "Знаете ли, эти квантовомеханические амплитуды вероятности - это так сложно и непонятно. И что заставляет вас думать, что так оно и есть? Может быть, вы неправы?"

Такие возражения очевидны и совершенно ясны всякому, кто работает над этими проблемами. Указывая на них, вы никому не принесете пользы. Задача состоит не в том, чтобы указать на возможную ошибку, а в том, чтобы в точности указать, как ее можно исправить, чем заменить отброшенное. Например, в случае непрерывного пространства предположим, что точное утверждение таково: пространство состоит из последовательности точек, и промежутки между ними не имеют никакого смысла, а все точки организованы в кубическую решетку. Тогда нетрудно показать, что это утверждение ложно. Оно не проходит. Задача не в том, чтобы просто сказать, что это неверно, а в том, чтобы заменить старое утверждение чем-то новым, а это не так-то просто. Как только вы подставите вместо отвергнутого что-то действительно определенное, почти сразу становится ясным, что это предложение не годится.

Вторая трудность в том, что число возможных предложений бесконечно. Все это выглядит примерно так. Вы сидите и трудитесь в поте лица, вы работаете уже давно - и все для того, чтобы открыть сейф. Но тут появляется умник, который понятия не имеет, что вы тут делаете, а знает только, что надо открыть сейф, и говорит: "А почему бы не попробовать комбинацию 10 : 20 : 30?" Но ты не сидел сложа руки, ты ведь испробовал тысячу комбинаций, может быть, ты уже попробовал и комбинацию 10 : 20 : 30. Может, ты уже знаешь, что средние цифры - это 32, а не 20. Или уже установил, что в комбинации всего пять цифр...

Так что, будьте добры, не посылайте мне писем, в которых вы пытаетесь объяснить мне, как все должно быть. Я  их читаю - я их всегда читаю, для того чтобы убедиться в том, что я уже думал о том, что в них предлагается, - но отвечать на них слишком долго, так как, по правде говоря, они все на уровне "давайте попробуем комбинацию 10 : 20 : 30". Обычно у природы гораздо больше воображения, чем у нас, как мы видели на примере других, очень тонких и глубоких теорий. А выдвинуть такую тонкую и глубокую гипотезу совсем не просто. Для того чтобы догадаться, нужно быть по-настоящему умным, и это невозможно сделать вслепую на машине.

Теперь я хочу рассказать вам об искусстве угадывания законов природы. Это действительно искусство. Как же это делается? Для того чтобы попытаться получить ответ на этот вопрос, можно, например, обратиться к истории науки и посмотреть, как это делали другие. Вот поэтому мы и займемся историей.

Нам нужно начать с Ньютона. Он находился в таком положении, что его знания были неполными, и он мог угадывать законы, сопоставляя понятия и представления, которые лежали близко к эксперименту. Между наблюдениями и экспериментальной проверкой не было дистанции огромного размера. Таков первый способ, но сегодня при его помощи вам вряд ли удастся добиться успеха.

Следующим великим физиком был Максвелл,открывший законы электричества и магнетизма. Вот что он сделал. Он объединил все законы электричества, открытые Фарадеем и другими учеными, работавшими до него, разобрался в том, что у него получилось, и понял, что с математической точки зрения один из этих законов противоречит другим. Для того чтобы все это выправить, ему нужно было добавить в уравнения еще одно слагаемое. Так он и сделал, придумав для себя модель из расположенных в пространстве шестеренок и зубчатых колес. Он нашел, каким должен быть новый закон, но никто не обращал на этот закон никакого внимания, так как никто не верил в его механизмы. Сегодня мы тоже не верим в эти механизмы, но полученные Максвеллом уравнения оказались правильными. Так что рассуждения могут быть неправильными, а ответ - верным.

В случае с теорией относительности характер открытия был совершенно другим. К этому времени накопилось много парадоксов: известные законы давали взаимно исключающие результаты. Формировался новый тип анализа - с точки зрения возможной симметрии физических законов. Ситуация была особенно сложной, ибо впервые стало ясно, что законы (и пример тому законы Ньютона) очень долго могут считаться правильными и все же в конце концов оказаться неверными. Кроме того, было трудно поверить, что могут быть неверными такие обычные, казалось бы, от рождения нам присущие представления о пространстве и времени.

К открытию квантовой механики мы пришли двумя совершенно разными путями - и пусть это послужит нам уроком. Здесь вновь, и даже в большей степени, накопилось огромное число парадоксов, открытых экспериментальным путем, и их никак не удавалось разрешить на основании уже известных законов. Дело было не в том, что нам не хватало знаний, а в том, что их было слишком много. Вы предсказываете, что должно происходить одно, а на самом деле происходит совсем другое. Два разных пути были выбраны Шредингером[13], который угадал основное направление, и Гейзенбергом, утверждавшим, что нужно исследовать только то, что может быть измерено. Эти два совершенно различных философских подхода привели в конце концов к одному открытию.

В самое последнее время в связи с открытием уже упомянутых мною законов слабых взаимодействий (распад нейтрона на протон, электрон и антинейтрино, о которых далеко еще не все известно) возникла совсем другая ситуация. На этот раз нам просто не хватало знаний и догадки строились лишь о виде уравнений. Но теперь особенную трудность представляло то, что все эксперименты оказались неправильными. А как можно угадать правильный ответ, если каждый теоретический результат расходится с экспериментом? Для того чтобы утверждать, что эксперимент неверен, требуется немалое мужество.

Сейчас у нас нет парадоксов, по крайней мере на первый взгляд. Правда, у нас есть эти бесконечности, которые вылезают наружу при попытке объединить все законы в единое целое, но люди так набили руку на том, как прятать весь мусор под ковер, что порой начинает казаться, будто это не так уж серьезно. Как и прежде, то, что мы открыли все эти частицы, ни о чем не говорит кроме того, что наши знания неполны. Я уверен, что в физике история не повторится, как это видно из уже приведенных примеров, и вот почему. Любая схема типа "ищите законы симметрии", или "запишите все, что вы знаете, в математической форме", или "угадайте уравнения" сейчас уже всем известна, и такими схемами все время пытаются пользоваться. Если вы застряли, ответ не может быть получен по одной из этих схем потому, что прежде всего вы попробовали использовать именно их. Каждый раз нужно искать новый путь. Каждый раз, когда образуется длительный затор, когда накапливается слишком много нерешенных задач, это происходит потому, что мы пользуемся теми же методами, которыми пользовались раньше. Новую же схему, новое открытие нужно искать совсем на другом пути. Так что от истории науки не следует ждать особой помощи.

Хочу остановиться теперь коротко на идее Гейзенберга, согласно которой не нужно говорить о том, что все равно нельзя измерить. Дело в том, что об этом толкуют многие, по-настоящему не понимая смысла этого утверждения. Его можно интерпретировать следующим образом: ваши теоретические построения или открытия должны быть такими, чтобы выводы из них можно было сравнивать с результатами эксперимента, т.е. чтобы из них не получилось, что "один тук равняется трем нукам", причем никто не знает, что такое эти самые тук и нук.

Ясно, что так дело не пойдет. Но если теоретические результаты можно сравнить с экспериментом, то это все, что нам требовалось.

Это вовсе не значит, что ваши туки и нуки не могут появляться в первоначальной гипотезе. Вы можете впихнуть в вашу гипотезу сколько угодно хлама при условии, что ее следствия можно будет сравнить с результатами экспериментов. А это не всем до конца понятно. Часто приходится слышать жалобы на то, что мы совершенно необоснованно распространяем на сферу атомной физики наши представления о частицах, траекториях и т.п. Но ведь это совсем не так, в подобной экспансии нет ничего необоснованного. Мы просто обязаны, мы вынуждены распространять все то, что мы уже знаем, на как можно более широкие области, выходить за пределы уже постигнутого.

Опасно? Да. Ненадежно? Да. Но ведь это единственный путь прогресса.

Хотя этот путь неясен, только на нем наука оказывается плодотворной. Ведь наука приносит пользу только тогда, когда говорит вам о еще непоставленных экспериментах. Она никому не нужна, если позволяет судить лишь о том, что известно из опыта, что только что произошло. Поэтому всегда необходимо распространять идеи за рамки того, на чем они уже опробованы. Например, закон всемирного тяготения, который был придуман для объяснения движения планет, был бы бесполезен, если бы Ньютон просто сказал: "Теперь я знаю, как ведут себя планеты", - и не считал бы себя вправе применять его к силам притяжения Луны Землей, а его последователи - предполагать: "А может быть, и галактики удерживаются силами тяготения". Мы должны пробовать такие идеи.

Конечно, можно сказать: "Когда переходишь к масштабам галактик, можно ожидать чего угодно, поскольку мы ничего об этом не знаем". Верно, но такое ограничение - это конец науке. Сейчас у нас нет окончательно выработавшегося представления о законах поведения галактик. Если же предположить, что их поведение целиком объясняется уже известными законами, такое предположение будет конкретным и определенным, и его легко экспериментально опровергнуть. Гипотезы именно такого рода, вполне определенные и легко сравнимые с экспериментом, мы и ищем. На самом деле, все известное нам о поведении галактик на сегодняшний день не опровергает, по-видимому, предположения, сделанного нами выше.

Можно привести еще один пример, еще более интересный и важный. Самой плодотворной мыслью, сильнее всего стимулирующей прогресс в биологии, является, по-видимому, предположение о том, что все, что делают животные, делают атомы, что в живой природе все результат каких-то физических и химических процессов, а сверх этого ничего нет. Конечно, всегда можно сказать: "Когда переходишь к живой природе, все возможно". Но если вы встанете на такую точку зрения, вы никогда не поймете законов живой природы. Понятно, очень трудно поверить, что извивающиеся щупальца осьминога - это лишь игра атомов, подчиняющихся известным законам физики. Но если исследовать такое движение, пользуясь подобной гипотезой, то оказывается, что мы можем довольно точно угадывать его характер. А тем самым мы добиваемся большого прогресса.

В догадках нет ничего ненаучного, хотя многие не занимающиеся наукой и думают, что это так. Несколько лет назад мне пришлось разговаривать с одним дилетантом о летающих тарелках: поскольку я ученый, я должен знать о летающих тарелках всю подноготную! Я объяснил ему, что не думаю, чтобы летающие тарелки действительно существовали. Это возмутило моего собеседника.

"Разве существование летающих тарелок невозможно? Разве вы можете доказать, что это невозможно?" - горячился он.

"Нет, - отвечаю я, - доказать этого я не могу. Просто это очень маловероятно".

"Но рассуждать так совершенно ненаучно, - продолжал наступать мой оппонент, - если вы не можете доказать, что это невозможно, как же можно позволить себе говорить, что это маловероятно?"

Но это и есть самый научный способ рассуждений. Наука говорит как раз о том, что более и что менее вероятно, а не доказывает каждый раз, что возможно, а что нет. Если бы я хотел высказаться более определенно, то мне нужно было бы сказать так: "Видите ли, на основании своих представлений об окружающем нас мире я считаю, что сообщения о летающих тарелках являются скорее результатом известной иррациональности мышления жителей нашей планеты, чем неизвестных рациональных усилий мыслящих существ с других планет". Просто первое из предположений гораздо более правдоподобно, и все тут. Это просто хорошая гипотеза. А мы всегда стараемся придумать самое правдоподобное объяснение, не забывая при этом о том, что если оно вдруг окажется негодным, нам придется заняться исследованием других возможностей.

Но как угадать, что нужно сохранять, а чем можно и пожертвовать? У нас столько прекрасных принципов и известных фактов - и все-таки у нас не сходятся концы с концами. То мы вновь получаем бесконечно большие значения, то наше объяснение оказывается неполным - чего-то недостает. Иногда это значит, что нам нужно расстаться с какой-то идеей. По крайней мере в прошлом всегда оказывалось, что для того чтобы выйти из аналогичного затруднения, приходилось пожертвовать каким-то глубоко укоренившимся представлением. Весь вопрос как раз и сводится к тому, что сохранить, а что отбросить. Если пожертвовать сразу всем, то это заведет нас слишком далеко, и у нас практически ничего не останется для работы. В конце концов, закон сохранения энергии кажется разумным, он удобен, и мне не хотелось бы с ним расстаться. Для того чтобы угадать, что сохранить а что отбросить, требуется немалое мастерство. По-правде говоря, я вполне допускаю, что дело здесь только в удаче, но выглядит все именно так, как если бы для этого требовалось большое мастерство.

Амплитуды вероятностей выглядят очень странно, и с первого взгляда вы совершенно уверены, что эта новая теория безусловно нелепа. Но все, что можно вывести из представления о квантовомеханических амплитудах вероятности, как бы странно это представление ни выглядело, оказывается верным, и так на протяжении всей теории странных частиц, на все 100%. Поэтому я не думаю, что когда мы откроем законы внутренней структуры нашего мира, эти представления окажутся неправильными Мне кажется, что эта часть физики правильна, но я только высказываю предположение, я рассказываю вам, как я строю догадки.

В то же время теория, согласно которой пространство непрерывно, мне кажется неверной, потому что она приводит к бесконечно большим величинам и другим трудностям. Кроме того, она не дает ответа на вопрос о том, чем определяются размеры всех частиц. Я сильно подозреваю, что простые представления геометрии, распространенные на очень маленькие участки пространства, неверны. Говоря это, я, конечно, всего лишь пробиваю брешь в общем здании физики, ничего не говоря о том, как ее заделать. Если бы я это смог, то я закончил бы лекцию новым законом.

Некоторые, указывая на противоречивость принципов физики, говорят, что существует только один внутренне непротиворечивый мир, а поэтому если мы соберем все принципы вместе и будем вычислять все очень и очень точно, то сможем не только вывести все настоящие принципы, но и обнаружить, что это единственные принципы, которые могут существовать при том условии, что все должно оставаться внутренне непротиворечивым. Мне такой замах кажется слишком большим. Мне кажется, это все равно, что "вилять" собакой, держа ее за хвост. Я думаю, что необходимо принять существование некоторых вещей, - не всех 50 с лишним частиц, но нескольких маленьких частиц вроде электрона и т.п., - а затем вероятно, окажется, что вся наблюдаемая сложность устройства нашего мира является естественным следствием этого факта и справедливости определенных принципов. И я не думаю, что все это можно получить из одних рассуждений и внутренней непротиворечивости.

Другая стоящая перед нами задача связана с наличием слабых симметрий. Существование таких симметрий вроде утверждения, что нейтрон и протон совершенно одинаковы, за исключением их электрических свойств, или что принцип зеркального отображения верен всюду, кроме реакции одного типа, все это очень досадно. Казалось бы, все симметрично, но на самом деле не до конца. По этому вопросу сейчас существуют две различные точки зрения. Одна утверждает, что на самом деле все просто, что на самом деле все симметрично и что все дело в небольших осложнениях, немного нарушающих идеальную симметрию. Другая школа, у которой всего один последователь, - это я, - не согласна с этим и верит, что все очень сложно и что простота достигается лишь через сложность. Древние греки считали, что планеты движутся по круговым орбитам. На самом же деле эти орбиты эллиптические. Они не идеально симметричны, но очень мало отличаются от окружностей. Возникает вопрос, а почему они симметричны только приближенно? Почему они так мало отличаются от окружностей? Из-за долговременного и очень сложного эффекта приливного трения - это очень сложная теория. Очень может быть, что в глубине души природа совершенно несимметрична, но в хитросплетениях реальности она начинает выглядеть почти симметричной, и эллипсы начинают походить на окружности. Вот вам и другая возможность. Но никто не знает ответа наверняка, все это просто догадки.

Предположим, что имеются две теории А и В, совершенно различные с психологической точки зрения, построенные на совершенно разных принципах и т.д., но такие, что все вытекающие из них следствия в точности одинаковы и совпадают с экспериментом. Итак, у нас есть две гипотезы, которые поначалу звучат совсем по-разному, но все выводы из которых оказываются одинаковыми (это обычно нетрудно показать математически, доказав, что логика теорий А и В всегда приводит к одинаковым результатам). Предположим, что такие две теории существуют, и зададим себе вопрос, на каком же основании мы отдадим предпочтение одной из них. Наука этого не знает, так как каждая из них согласуется с экспериментом в одинаковой степени. Поэтому две теории, основывающиеся, возможно, на глубоко различных принципах, могут быть с математической точки зрения идентичными, и не существует научного метода выяснения, какая из них верна.

Однако с психологической точки зрения обе эти теории могут быть совершенно не равноценными для угадывания новых теорий: ведь они построены совсем на разных фундаментах. Находя для теории место в определенной схеме понятий, вы можете вдруг разглядеть, что здесь требует изменения. Например, в теории А что-то говорится о чем-то, а вы скажете: "Вот это нужно изменить".

Но выяснить, что нужно изменить в другой теории для того, чтобы прийти к эквивалентному результату, может быть очень сложным, и додуматься до этого, может быть, совсем не просто. Другими словами, предполагаемое изменение может быть совершенно естественным для одной теории и столь же неестественным для другой, хотя до него они были абсолютно тождественны. Вот почему, учитывая психологию научного творчества, мы должны помнить о всех этих теориях и вот почему каждый приличный физик-теоретик знает шесть или семь теоретических обоснований одних и тех же физических фактов. Он знает, что они эквивалентны и что никто и никогда не сможет решить, оставаясь на этом же уровне, какая из этих теорий верна, но он помнит о них всех, надеясь, что это подскажет ему разные идеи для будущих догадок.

А это напоминает мне еще об одном вопросе, о том, что совсем незначительные поправки к теории могут потребовать радикальной перестройки понятий и представлений, лежащих в ее основе. Например, представления Ньютона о пространстве и времени прекрасно согласовались с экспериментом, но для того, чтобы правильно объяснить движение планеты Меркурий, а оно едва заметно отличалось от того, что получалось по теории Ньютона, потребовались колоссальные изменения в характере всей теории. Причина этого кроется в том, что законы Ньютона были весьма просты, весьма совершенны и давали вполне определенные результаты. Для того чтобы построить теорию, которая вносила бы едва заметные поправки, ее нужно было полностью изменить.

Формулируя новый закон, нельзя ввести неидеальности в идеальную схему: нужна совершенно новая идеальная теория. Вот почему так велика разница в философии теории гравитации Эйнштейна и теории всемирного тяготения Ньютона.

Что же такое идейное обоснование физической теории? На самом деле это просто ловкий способ быстро делать вывод. Философская или, как ее еще иногда называют, идеологическая интерпретация закона является лишь способом, позволяющим держать этот закон в голове в виде, пригодном для быстрого отгадывания его следствий. Некоторые говорят (и они правы в случае, например, уравнений Максвелла): "Бросьте вы вашу философию, все эти ваши фокусы, а лучше угадывайте-ка правильные уравнения. Задача лишь в том, чтобы вычислять ответы, согласующиеся с экспериментом, и если для этого у вас есть уравнения, нет никакой нужды в философии, интерпретации или любых других словах". Это, конечно, хорошо в том смысле, что, занимаясь одними уравнениями, вы свободны от предрассудков и вам легче отгадывать неизвестное. Но, с другой стороны, может быть, именно философия помогает вам строить догадки. Здесь трудно сделать окончательный выбор.

Пусть те, кто настаивает на том, что единственно важным является лишь согласие теории и эксперимента, представят себе разговор между астрономом из племени майя и его студентом. Майя умели с поразительной точностью предсказывать, например, время затмений, положение на небе Луны, Венеры и других планет. Все это делалось при помощи арифметики. Они подсчитывали определенное число, вычитали из него другое и т.д. У них не было ни малейшего представления о вращении небесных тел. Они просто знали, как вычислять время следующего затмения или время полнолуния и т. п. Так вот, представьте себе, что к нашему астроному приходит молодой человек и говорит:

"Вот что мне пришло в голову. Может быть, все это вертится, может, это шары из камня или что-нибудь в этом роде, и их движение можно рассчитывать совсем иначе, не просто, как время их появления на небе".

"Хорошо, - отвечает ему астроном, - а с какой точностью это позволит нам предсказывать затмения?"

"До этого я еще не дошел", - говорит молодой человек.

"Ну, а мы можем вычислять затмения точнее тебя, - отвечает ему астроном, - так что не стоит дальше возиться с твоими идеями, ведь математическая теория, очевидно, лучше".

И практически каждый раз, когда у кого-нибудь появляется свежая идея сегодня и он говорит: "А может быть, все происходит вот так", - ему спешат возразить: "А какое решение такой-то и такой-то задачи у вас тогда получится?" - "Ну, до этого я еще не дошел", - следует ответ. "А мы уже продвинулись гораздо дальше и получаем очень точные ответы". Как видим, нелегкая задача решить, стоит или не стоит задумываться над тем, что кроется за нашими теориями.

Еще один метод работы, конечно, состоит в выдумывании новых принципов. В теории гравитации Эйнштейн сверх всех остальных принципов придумал принцип, основанный на идее, что силы всегда пропорциональны массам. Он догадался, что если вы сидите в разгоняющемся автомобиле, то вы не сможете отличить свое состояние от того, в котором вы оказались бы в поле тяжести. Добавив этот последний принцип ко всем остальным, он смог правильно угадать уравнения гравитационного поля.

Я показал вам несколько различных путей новых открытий. Хотелось бы теперь сделать несколько дополнительных замечаний относительно их конечных результатов. Прежде всего, что же у нас получается после того, как все кончено и мы построили некоторую математическую теорию, позволяющую предсказывать результаты экспериментов?

Вот тут-то и начинаются чудеса. Для того чтобы решить, что произойдет с атомом, мы составляем правила со значками, нарисованными на бумаге, вводим их в машину, в которой имеются переключатели, включающиеся или выключающиеся каким-то сложным образом, а результат говорит нам о том, что должно произойти с атомом! Если бы законы, по которым включаются и выключаются все эти переключатели, были какой-то моделью атома, если бы мы считали, что в атоме есть аналогичные переключатели, я бы сказал, что я еще более или менее понимаю, в чем тут дело. Мне лично кажется чрезвычайно удивительным, что прогнозировать можно, пользуясь математикой, т.е. просто следуя определенным правилам, не имеющим никакого отношения к тому, что происходит в действительности. Включение и выключение переключателей в вычислительной машине ничем не напоминает того, что в действительности происходит в природе.

Один из самых важных моментов в этой последовательности "догадка - вычисление следствий - сравнение с результатами экспериментов" заключается в том, чтобы знать, где вы правы. Об этом можно догадываться гораздо раньше, чем рассчитаны все следствия. Истину можно узнать по простоте и изяществу. Чаще всего узнать, правильна ваша догадка или нет, нетрудно уже после двух-трех элементарных расчетов, позволяющих убедиться в том, что она не очевидно неправильна. Если вам повезло, это сразу бросается в глаза (по крайней мере если у вас есть опыт), так как чаще всего приходится не столько добавлять, сколько отбрасывать. Ваша догадка, в сущности, состоит в том, что нечто - очень простое.

Если вы не видите сразу же, что это неверно, и если так оказывается проще, чем раньше, - значит, это верно. Правда, простые теории предлагают и неопытные люди или безудержные фантазеры, но здесь сразу ясно, что они неверны, так что это в счет не идет. Другие же, например неопытные студенты, высказывают очень сложные догадки, и им кажется, что все правильно, но я знаю, что это не так, ибо истина всегда оказывается проще, чем можно было бы предположить.

Что нам действительно нужно, так это воображение, но воображение в надежной смирительной рубашке. Нам нужно найти новую точку зрения на мир, которая должна согласоваться со всем, что уже известно, но кое в чем расходиться с нашими установившимися представлениями, иначе это будет не интересно. И расхождения должны соответствовать тому, что происходит в природе. Если вам удастся придумать точку зрения на мир, которая согласуется со всем тем, что уже выяснено, и приводит где-то к другим результатам в сомнительных областях, вы делаете великое открытие. Найти же теорию, которая согласуется с экспериментом, где справедливость существующих теорий уже установлена и в то же время приводит в других областях к каким-то новым выводам, даже если они не согласуются с результатами эксперимента, почти невозможно. Но только почти. Новые идеи придумывать очень трудно. Для этого требуется совершенно исключительное воображение.

Что же можно сказать о будущем этого увлекательного приключения? Чем же все это кончится? Мы угадываем все новые и новые законы. Сколько же их будет, в конце концов, этих новых законов?

Не знаю.

Некоторые из моих коллег говорят, что этот основной аспект нашей науки сохранится всегда. Но мне кажется, что трудно рассчитывать на постоянную смену старого новым, скажем в течение ближайших 1000 лет. Не может быть, чтобы это движение вперед продолжалось вечно и чтобы мы могли открывать все новые и новые законы. Ведь если бы это было так, то нам быстро надоело бы все это бесконечное наслоение знаний. Мне кажется, что в будущем произойдет одно из двух.

Либо мы узнаем все законы, т.е. мы будем знать достаточно законов, чтобы делать все необходимые выводы, а они всегда будут согласоваться с экспериментом, на чем наше движение вперед закончится.

Либо окажется, что проводить новые эксперименты все труднее и труднее, и все дороже и дороже, так что мы будем знать о 99,9% всех явлений, но всегда будут такие явления, которые только что открыты, которые очень трудно наблюдать и которые расходятся с существующими теориями, а как только вам удалось объяснить одно из них, возникает новое, и весь этот процесс становится все более медленным и все менее интересным. Так выглядит другой вариант конца. Но мне кажется, что так или иначе, но конец должен быть.

Нам необыкновенно повезло, что мы живем в век, когда еще можно делать открытия. Это как открытие Америки, которую открывают раз и навсегда. Век, в который мы живем, это век открытия основных законов природы, и это время уже никогда не повторится. Это удивительное время, время волнений и восторгов, но этому наступит конец. Конечно, в будущем интересы будут совсем другими. Тогда будут интересоваться взаимосвязями между явлениями разных уровней - биологическими и т.п. или, если речь идет об открытиях, исследованием других планет, но все равно это не будет тем же, что мы делаем сейчас.

Кроме того, в конце концов наступит время, когда все станет известным или дальнейший поиск окажется очень нудным, и тогда сами собой замолкнут кипучие споры по основным вопросам философии физики и исчезнет забота о тщательном обосновании всех тех принципов, о которых мы беседовали в этих лекциях. Наступит время философов, которые до этого стояли в стороне, делая лишь время от времени критические замечания. Тогда нам не удастся уже оттереть их, сказав: "Если бы вы были правы, нам удалось бы сразу открыть все остальные законы". Ведь как только все законы станут известны, они смогут придумать для них объяснение. Например, всегда находится объяснение трехмерности нашего мира. Ведь у нас всего один мир, и трудно сказать, верно это объяснение или нет, так что, если бы все было известно, наверняка нашлось бы какое-то объяснение, почему эти законы верны. Но это объяснение уже нельзя будет критиковать за то, что оно не дает нам двигаться дальше. Наступит время вырождения идей, вырождение того же сорта, которое знакомо географу - первооткрывателю, узнавшему, что по его следам двинулись полчища туристов.

В наши дни мы испытываем радость, огромную радость от того, что можем предвидеть, как будет вести себя природа в новых, еще никому не ведомых условиях. Эксперименты и информация об определенной области позволяют нам догадываться, что же произойдет в других, еще никем не исследованных районах. Между прочим, эти догадки очень часто совершенно отличны от того, что мы привыкли наблюдать, а для таких догадок требуется светлая голова.

Так чем же можно объяснить такую возможность? Почему природа позволяет нам по наблюдениям за одной ее частью догадываться о том, что происходит повсюду? Конечно, это не научный вопрос; я не знаю, как на него правильно ответить, и отвечу столь же ненаучно: мне кажется, причина в том, что природа проста, а потому прекрасна.



Примечания:



1

Тихо Браге (1546-1601) - датский астроном



10

Мария Гёпперт-Майер (1906-1972) - американский физик, получившая в 1963 г. Нобелевскую премию, с 1960 г.- профессор физики в Калифорнийском университете)



11

Ханс Даниель Йенсен (1907-1973) - немецкий физик, лауреат Нобелевской премии за 1963 г., с 1949 по 1968 гг.-директор Института теоретической физики при Гейдельбергском университете



12

Хидэки Юкава (1907-1981) - японский физик-теоретик, лауреат Нобелевской премии по физике за 1949 г.



13

Эрвин Шредингер (1887-1961) - австрийский физик-теоретик, совместно с Полем Дираком получивший Нобелевскую премию по физике за 1933 г.







 


Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Наверх